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ABSTRACT

Motivation: In genomic studies, thousands of features are
collected on relatively few samples. One of the goals of
these studies is to build classifiers to predict the outcome of
future observations. There are three inherent steps to this
process: feature selection, model selection, and prediction
assessment. With a focus on prediction assessment, we com-
pare several methods for estimating the 'true’ prediction error
of a prediction model in the presence of feature selection.
Results: For small studies where features are selected from
thousands of candidates, the resubstitution and simple split-
sample estimates are seriously biased. In these small samp-
les, leave-one-out (LOOCV), 10-fold cross-validation (CV),
and the .632+ bootstrap have the smallest bias for diago-
nal discriminant analysis, nearest neighbor, and classification
trees. LOOCYV and 10-fold CV have the smallest bias for linear
discriminant analysis. Additionally, LOOCYV, 5- and 10-fold CV,
and the .632+ bootstrap have the lowest mean square error.
The .632+ bootstrap is quite biased in small sample sizes
with strong signal to noise ratios. Differences in performance
among resampling methods are reduced as the number of
specimens available increase.

Supplementary Information: A complete compilation of results
is available in Molinaro et al. (2005). R code for simulations
and analyses is available from the authors.

Contact: annette.molinaro@yale.edu

1 INTRODUCTION

In many studies observations are known to belong to pre-
determined classes and the task is to build predictors or
classifiers for new observations whose class is unknown.
Deciding which genes or proteomic measurements to include
in the prediction is calledeature selectiorand is a cru-
cial step in developing a class predictor. Including too many
noisy variables reduces accuracy of the prediction and may
lead to over-fitting of data, resulting in promising but often
non-reproducible results (Ransohoff, 2004).

Another difficulty is model selection with numerous clas-
sification models available. An important step in reporting
results is assessing the chosen model’s error rate, or gene-
ralizability. In the absence of independent validation data, a
common approach to estimating predictive accuracy is based
on some form of resampling the original data, e.g., cross-
validation. These techniques divide the data into a learning
set and a test set and range in complexity from the popular
learning-test split ta-fold cross-validation, Monte-Carle-
fold cross-validation, and bootstrap resampling. Few compa-
risons of standard resampling methods have been performed
to date, and all of them exhibit limitations that make their
conclusions inapplicable to most genomic settings. Early
comparisons of resampling techniques in the literature are
focussed on model selection as opposed to prediction error
estimation (Breiman and Spector, 1992; Burman, 1989). In
two recent assessments of resampling techniques for error
estimation (Braga-Neto and Dougherty, 2004; Efron, 2004),
feature selection was not included as part of the resampling

In genomic experiments one frequently encounters higtProcedures, causing the conclusions to be inappropriate for
dimensional data and small sample sizes. Microarrays simufhe high-dimensional setting.

taneously monitor expression levels for several thousands We have performed an extensive comparison of resamp-
of genes. Proteomic profiling studies using SELDI-TOFEling methods to estimate prediction error using simulated
(surface-enhanced laser desorption and ionization time-oflarge signal to noise ratio), microarray (intermediate signal
flight) measure size and charge of proteins and protein fragf©® noise ratio) and proteomic data (low signal to noise ratio),
ments by mass spectroscopy, and result in up to 15,006ncompassing increasing sample sizes with large numbers
intensity levels at prespecified mass values for each spectrurfif features. The impact of feature selection on the perfor-
Sample sizes in such experiments are typically less than 100ance of various cross validation methods is highlighted.
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The results elucidate the 'best’ resampling techniques for
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future research involving high dimensional data to avoidHowever, in realityP is unknown, thus, the rule based upon
overly optimistic assessment of the performance of a modelthe observationé)y, ..., O,, has an expected loss, condi-

tional risk (also known as the generalization error), defined
2 METHODS as:

In the prediction problem, one observesndependent and .

identically distributed (i.i.d.) random variable3,, .. ., O, On = R(Y(|Pn), P) = / Ly, ¢(x|Pp))dP(z,y).  (2)

with unknown distributionP. Each observation i@ consists

of an outcomeY with range) and al-vector of mea- There are two impetuses for evaluating the conditional risk:
sured CovariateS, or featurex with rangeX, such that model selection and performance assessment. In model selec-
O; = (X;,Y;), i = 1,...,n. In microarray experiments tion, the goalis to find the one which minimizes the conditio-

X includes gene expression measurements, while in protec513| risk over a collection of potential models. In performance

mic data, it includes the intensities at the mass over charg@ssessment, the goal is to estimate the generalization error for

(m/z) Va'ues_X may also Contain Covariates SUCh as a pa“_a giVen model, i.e., assess hOW We” it prediCtS the outcome

ent's age and/or histopathologic measurements. The outcon® an observation not included @.

Y may be a continuous measure such as months to disease of" an ideal setting an independent data set would be availa-

a categorical measure such as disease status. ble for the purposes of model selection and estimating the
The goal in class prediction is to build a rule implementinggeneralization error. Typically, however, one must use the

the information fromX in order to predicty. The inten- Observed sampl for model building, selection, and perfor-

tion is that by building this rule based on the observationgnance assessment. The simplest method for estimating the

01’ . ’On a future unobserved Outcorﬂe can be predic- conditional risk is with theesubstitutioror apparenterror:

ted based on its corresponding measured featiigedf the .

outcome is continuous, then the rule, or predictois defi- 055 = R(¥(-|Py), Py) = /L(y7¢($lp7z))dP7L($, y). (3)

ned as a mapping from the feature spatento the real line,

i.e. : X — R. Consequentlyj = ¢(x) denotes the predic- Here each of then observations are used for construc-

ted outcome based on the observédSuch predictors can be ting, selecting, and, subsequently, evaluating the predic-

built via regression (linear and non) or recursive binary partition error of ). Consequently, the resubstitution risk esti-

tioning such as Classification and Regression Trees (CARTnate tends to underestimate the generalization error (Efron,

(Breimanet al,, 1984). If the outcom& is categorical itassu- 1983; McLachlan, 1992). To alleviate this biased estimation,

mes one of K values. In this case, the ryleartitions the resampling methods such as cross-validation or bootstrap-

feature spacet’ into K disjoint and exhaustive groups, ping can be employed. In the next section, we describe

wherek = 1,..., K, such thaty = k if z € Gj. Stan- these techniques and their implications in the framework of

dard statistical analyses include linear discriminant analysiprediction error.

(LDA) and diagonal discriminant classifiers (DDA), negrgstzll Resampling Methods

neighbors (NN), and CART, as well as aggregate classifiers.

Thorough discussions of the prediction problem and availabl&? the absence of a large, independent test set, there are

algorithms can be found in Breimanal.(1984); McLachlan ~numerous techniques for ass_e_ssi_ng prediction error by imple-

(1992); Ripley (1996); Hastiet al. (2003). menting some form of partitioning or resamplmg of the
The ruley can be written ag)(- | P,), whereP, denotes orlglrjal observeq daté. Egch of these techniques involves

the empirical distribution oD and reflects the dependence dividing the data into &arning setand atest setFor purpo-

of the built rule on the observed data. Loss functions may€S of model selection the learning set may further be divided

be employed to quantify the performance of a given ruleinto atraining setand avalidation set We will focus solely

A common loss function for a continuous outcoivigs the  On the partitioning of the data into learning and test sets for

squared error lossl(Y, ) = (Y — 4(X))2. With a cate- the express purpose of egtimatipg the general_ization error.

gorical outcomeY’, a popular choice is the indicator loss T0 €nhance a general discussion of resampling methods we

function, L(Y, ) = I(Y # ¥(X)). A loss function could define a blna_ry rar_ldom-vector,_S,L € {0,1}", Wh|c_h splits

also incorporate differential misclassification costs (Breimarfh€ observations into the desired subsets (Molireral,

etal, 1984). 2004). A realization ofS,, = (Sy.1,...,5,,,) prescribes a
For either type of outcome, the expected lossrisk, is  Particular split of the entire data set afobservations into
defined as: a learning set{i € {1,...,n} : S,; = 0}, and a test

set,{i € {1,...,n} : S,; = 1}. Letp be the proportion
0 = R(¢, P) = Ep[L(Y, )] = /L(y,w(x))dP(x,y). (1)  of observations in the test set. The empirical distributions of
the learning and test sets are denotedily; and P, g |
The rule in (1) is constructed and evaluated upon the disrespectively. ImportantlyS,, is independent of the empiri-
tribution P, as suchg is referred to as thasymptotic risk  cal distribution of the complete data set ofobservations
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P, and the particular distribution of,, defines the type proportion in the learning set decreasing the bias. In addi-
of resampling method. Gives,,, the performance of any tion, the number of averages is equivalenttand thus, may
given estimator)(-|P,) can be assessed via tresampling  additionally decrease the bias.

conditional riskestimate o o
2.1.3 Leave-One-Out Cross-Validation (LOOCV)his is

/L(va(. | PO g ))dPL g (0), (4) the most extreme case offold cross-validation. In this
o " method each observation is individually assigned to the test
tSet, i.e.p = nandp = 1/n (Lachenbruch and Mickey, 1968;
Geisser, 1975; Stone, 1974, 1977). The distributiofi,obla-
observations in the test set. ces mass$/n on then binary vectors which assign each of the

There are several considerations when selecting a resamp-OPservations to the learning and test sets. LOOCV and the
ling method. The first is sample size For v-fold cross- ~ corresponding = 1/n represent the best example of a bias-
validation and bootstrap, Dudoit and van der Laan (Zoogyar!ance trade-off. It tend; toward a small bias with elevated
have shown that as — oo (and consequentlyp — o) variance. In model selectlon_, LQOCV hgs performed poorly
asymptotic optimality is achieved. However, no such resultgompared to-fold cross-validation (Breiman and Spector,
exist for finite samples. Other considerations are on the prot992). Due to the computational burden, LOOCV has not

portion p of the observations for the test set and the numbeP®€n @ favored method for large samples and its behavior

of times the estimate is calculated. We address these considd- €Stimating generalization error has not been thoroughly

rations in the following sections and refer the reader to mortudied.
detailed discussions in McLachlan (1992) and Davison an 1 4 Monte Carlo Cross-Validation (MCCVMCCV
Hinkley (1997). randomly splits the sample into a learning and test set nume-

2.1.1 Split Sample This popular resampling method, also rous times (e.g., 20, 50, or 1000 iterations). For each split
known as théearning-test splior holdout metho@McLach- ~ np = n(1/v) of the observations are labeled as the test set
lan, 1992), entails a single partition of the data into a learning@ndn(1 — p) = n(1 — 1/v) as the learning set. For exam-
set and a test set based on a predetern'ym&'br examp|e’ ple, in MCCV withv = 10 each of50 iterations allot10%

p = 1/3 allots two-thirds of the data to the learning set andof the data to the test set and% to the learning set. The
one third to the test set. The distribution §f places mass generalization error is assessed for each ofihéest sets

1/2 on two binary vectors which asgign theobservations and subsequently averaged over faterations. The distri-

to the learning and test sets. The advantage of this method Rtion of S,, puts mass /(. ) on each of the binary vectors
the ease of computation. Also, since the classifier is develd€presenting one splitinto a learning and test set. As the num-
ped only once, a completely specified algorithm for classifiefoer of iterations increase the computational burden of MCCV
development need not be available; the development can B& quite large. However, unless the iterations of random splits
more informal and subjective. There are two potential sourcegdPproaches infinity, the chance that each observation is inclu-
of bias inherent in this method: bias introduced by each indided in a learning set and a test set (over all iterations) is small
vidual observation contributing only to the learning or testintroducing a similar bias to that of the split sample approach
set; and' bias due to a small |earning set whereas both feat(j-e., when each observation is either in the Iearning set or test
res and classifiers selected depend solely on the learning s&€t)-

Because the learning set is smaller than the full data set, tl"f1 5 632+ Bootstrap Several variations of the bootstrap

test set error for a model built on the training set will tend to . . o

) o have been introduced to estimate the generalization error. The
over-estimate the unknown generalization error for a modell . SRS
built on the full dataset. eave-one out bootstrap ) is based ona random sample

drawn with replacement from observations (Efron, 1983;

2.1.2 v-fold Cross-Validation This method randomly Efron and Tibshirani, 1993). For each draw the observa-
assigns the: observations to one af partitions such that tions left out (approximately368n) serve as the test set.
the partitions are near equal size. Subsequently, the learnifithe learning set has approximately32n unique observa-
set contains all but one of the partitions which is labeled thdions which leads to an overestimation of the prediction error
test set. The generalization error is assessed for each of tifiee., a decrease in the learning set leads to an increase in
v test sets and then averaged ovemn this method, the dis- the bias). To correct for this two estimators have been sug-
tribution of S,, puts masd /v on thew binary vectors which  gested: the .632 bootstrap and the .632+ estimator. Both
assign each of the observations to one of thepartitions.  correct by adding the underestimated resubstitution error
The proportiorp is approximately equal to/v. Bothp and 625, whBS + (1 — w)AES. For the .632 bootstrap the weight
the number of averages can adversely or positively affect this is constant{ = .632), whereas for the .632+ bootstrap
estimate of error. For example, a largee.g., v = 10) is determined based on the "no-information error rate” (Efron
results in a smaller proportignin the test set; thus, a higher and Tibshirani, 1997). We focus on the latter as it is the most

en(l—p) = -ESn

whereS,, refers to binary split vectors for the entire data se
of n observations angd = ). S; ,,/n is the proportion of.
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used in the literature and the most robust across differertf the observed dat@ is unknown and thus, so is the "true”

algorithms (Efron and Tibshirani, 1997). conditional risk. In order to estimat®, in Eq. 2 we will
) use the complete observed data. As such, the subsample’s
2.2 Algorithms second role is to serve as the learning set and the remaining

Predictions of outcomes based on the obseXe@dn employ N —n observations as the test set for an approximation of the
parametric or non-parametric algorithms. If the outcome isconditional riskd,,.
continuous, predictors can be built using regression models Given the high-dimensional structure of each data set (i.e.,
or recursive binary partitioning like CART. If the outcome is largel), feature selection is an important task administered
categorical, algorithms which partition the feature space before running any of the algorithms. Feature selection must
into disjoint and exhaustive groups are used. In this manugeccur based on the learning set within each resampling, other-
cript, we limit our discussion to the classification of binary wise additional bias is introduced (Simenal, 2003). This
outcomes, i.eY = 0 orY = 1, and thus, evaluate methods correct approach to feature selection within cross-validation
for the estimation of prediction error in the context of the has been referred to dnestor complete(Quackenbush,
following classification algorithms. 2004). There are many methods available for feature selec-

We calculate the LDA with théda function in theMASS tion, heret-tests are used. Initially components &f with
library of the statistical packagR (Venables and Ripley, the largestl0 absolute valug-test statistics are considered.
1994; lhaka and Gentlemen, 1996). We use the functiolsubsequently, the large2t are discussed.
dida in the library supclust in R to implement DDA All simulations and analyses were implementeRifhaka
(Dettling and Maechler, 2004). The librasypclust also  and Gentlemen, 1996).
houses the functiomnr for NN. CART classification is .

3.1 Simulated Data

obtained using the library and functigoart in R(Breiman
et al, 1984; Therneau and Atkinson, 1997) The simulated data sets are generated as described in Bura

and Pfeiffer (2003). Each data set contai¥is= 300 obser-
vations with750 covariates, representing patients and genes,
3 ANALYSIS respectively. Half of the observations (i.e., 150) are labeled
The goal of this analysis is to ascertain differences betweepontrols = 0) and half cases{ = 1). Of the750 genesg
resampling methods in the estimation of generalization erroare associated with disease and the others are non-predictive.
(presently, limited to the classification problem) in the pre-The controls are simulated from a multivariate normal distri-
sence of feature selection. We evaluate the influence of sanbution with a mean o6 and covariance matriX. The cases
ple size, parametric to non-parametric classification methodave98% non-differentially expressed genes which are gene-
and large feature spaces on each resampling method’s abilitgted from the samé/ (0, ¥) as the controls. The% of the
to estimate the resampling conditional FI@J§<1 _p» (Eq. 4)  genes that are differentially expressed are generated from a
compared to that of the "true” conditional rigk (Eq. 2). As  mixture of two multivariate normals with meaps and o
such, arange of sample sizes£ 40, n = 80, andn = 120), and covariance structuB. The mixing probability is0.5.
classification algorithms (LDA, DDA, NN, and CART), and The covariance matriX = (o;;) has a block structure with
data sets (simulated, microarray, and proteomic; see Sectioms; = 0.2 for |j —¢| < 5 and zero otherwise. Estimates of
3.1-3.3) are utilized. Prior to discussing results, the generaﬁn(l,p) andd,, are based on learning samples of sifeg0,
strategy for estimating the risks is explained followed by theand120 and test sets of siz#0, 220, and180, respectively.
specifics of each data set.
Each data set consists dfobservations withV, cases and 3-2 Lymphoma and Lung Data sets
Ny controls and measured features. For=1,..., Rrepe-  The microarray data sets are both publicly available. The first
titions, a random sample of sizestratified by case/control focuses on diffuse large-B-cell ymphoma (Rosenwetldl,,
status is selected fronv such that the number of cases in 2002). In this study there afg99 genes on the microarray
the subsample«(/2) equals the number of controls. The stra- and 240 patients. For the purposes of this analysis, the out-
tification allows for equal representation of both cases ang@ome variable represents the lymphoma subtype: activated
controls such that classification algorithms relying on majo-B-cell for Y = 0 and germinal-center B-cell foY =
rity consensus are not biased toward either (Quackenbusfthis is an example of a moderate signal to noise ratio data
2004). This random sample, or subsample, plays two roleset as the subgroups do not separate perfectly based on the
First, it serves as a sample from which the resampling conmicroarray observations (Wriglet al, 2003). Estimates of
ditional nsk@n(l _p) Can be estimated. This is accomplished§,, (1-p) and 6,, are based on learning samples of site
by splitting the subsample into a learning and test set cor80, and120 and test sets of siz200, 160, and120, respec-
responding to each of the resampling methods. For eactively. The second study uses oligonucleotide microarrays
r, an estimate oén(l,p) is obtained for each resampling to measurel2601 transcript sequences fag6 lung tumor
method with all four algorithms. In reality the distributidgh ~ samples (Bhattacharjest al, 2001). For our analysis, the
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outcome represents th89 adenocarcinomas @ = 0 and  minimal.
the remainingl7 tumors as” = 1.
33 Proteomic Ovarian Data set Simulation Study Results Forn = 40, LOOCV and 10-

' fold CV have the smallest MSE and bias followed by 5-fold
The proteomic data set consists of 164 SELDI-TOF measuey and then .632+ (Table 1). The largest MSE and bias occur
rements from NCI/Mayo Clinic serum samples. These datgyith 2-fold CV and Split Sample with = 1/2. Forn = 80
are part of a study designed to validate previously identifiechndy, = 120 the differences among these methods diminish.
proteomic markers for ovarian cancer. The readings are fromgr , — 40 andn = 80, .632+ has the smallest standard
fraction 4, IMAC30 ProteinChip arrays, read at high and lowdeviation followed by 10-fold CV, LOOCYV, and 5-fold CV.
energy settings in a PCS4000 ProteinChip Reader (Ciphergefhe only exception is for LDA and NN at = 80, when

Biosystems, Inc., Fremont, CA). The spectra were extert 0OCV and 10-fold CV have the smallest. At= 120, the
nally calibrated for mass, internally normalized for intensity gifferences among these methods diminish.

using total ion current, and baseline subtracted. Peaks were

manually selected and the intensity recorded. Lymphoma and Lung Study Results. In the lymphoma
Of then = 164 observations, 45 are ovarian cancer casestydy, forn = 40,80, and 120, .632+, LOOCYV, 5- and

and 119 controls. Estimates 6f;_,, andd,, are based on  10-fold CV have the smallest MSE and bias. The two split
learning samples of siz€) and80 and test sets of sizbi4

and104, respectively. Given the nature of proteomic data as
well as the naive algorithms implemented this will serve as a

low signal to noise example. Table 1. Prediction Error EstimatesThe estimatd,, (col 4) and standard
deviation (col 5) based on learning sample of si@eThe estimat®,, (rows
3.4 Results 1-4) and standard deviation based on the remaining 260 observations. Bias

To compare the resampling methods in Section 2.1, contcol §) and MSE (col 7) reported fqr each resampling techpique (c_ol 1) and
ditional risk estimates for each method are calculated an?l‘gonthm (col 3). The ten genes with largesttatistics used in algorithms.
. . inimums inbold.
compared to each other and the truth (i.e., the conditiona
risk). This evaluation is based on the mean squared error

(MSE) and bias, calculated as follows: Estimator D Algorithm  Est  St.Dev Bias MSE
i LDA  0.078 0.093
| B Or, 0.87 DDA  0.160 0.086
_ 1 i 2 NN 0.042 0.084
MSE = r Zw””” Orr) CART  0.121 0.133
r=1 LDA 0357 0.126 0279 0.097
1B 0.5 DDA  0.342 0.106 0.182 0.052
Bias — — 0 0 NN 0277 0.135 0235 0.077
r ;( nr = Onr): CART 0430 0121 0309 0.134
- DA  0.161 0.127 0.083 0.017
whered,, .. is the resampling conditional risk ag ,. is the U‘Cff\’/'d 0.2 DNDNA g-igg g-cl’gg g-gég g-gﬁ
conditional risk fqr thqth repetm_on. In all results the total CART 0284 0117 0163 0055
number of repetitions is set &00, i.e., R = 100. DA 0118 0120 0.040 0.008
There were several attempts to examine the effect of vary- 0.1 DDA 0177 0.087 0.017 0.007
ing p on those resampling methods which allow user-defined NN 0.078 0.102 0.036 0.005
test set proportions (i.ev;fold cross-validation, MCCV, and CART 0189 0104 0068 0024
split sample). Fow-fold cross validation2, 5, and10-fold LDA 0.092°0.115 0.014 0.008
lored. In MCCV, botlh and the number of MCCV Loocv 0025 DDA 0.164 0,096 0.004 0.007
were explored. » Oty / NN 0058 0.103 0.016 0.005
repetitions affect the estimation, thus, test set proportions CART  0.146 0125 0025 0.018
of p = 05, p = 0.2, p = 0.1 as well as repetitions of LDA 0.205 0.184 0.127 0.053
20,50, and1000 were run. In split sample estimation test set 0.333 DDA 0.243 0.138 0.083 0.034
proportions of botlp = 1/3 andp = 1/2 were examined to NN 0145 0169 0.103 0.044
the bias/variance trade-off SPLIT CART  0.371 0174 025 0.121
assess variar - , [DA 0348 0185 0270 0113
Due to space limitations, all results are discussed but only a 0.5 DDA 0344 0139 0184 0.062
limited number of tables can be displayed. The interested rea- NN 0.265 0.177 0.223 0.086
der is referred to Molinaret al. (2005) for a comprehensive CART 0438 0.155 0317 0.147
compilation of results. The MCCV results are not included ;%AA 0622;46 8-832 8-122 8-8‘2‘;
_below.as the only nptlceqble |mprov_e.ment oveiold CV 50reps A 368 NN 0200 0070 0158 0032
is a slight decrease in variance. Additionally, the advantage CART 0387 0.080 0266 0.100

of increasing the MCCYV iterations from 20 to 50 to 1000 is
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samples and 2-fold CV have the largest MSE and bias. Simi‘[able 4. Prediction Error Estimates without f_eature selectio'ﬁ_) assess

. . the effect of no feature selection on resampling methods estimation, only
lar t_O Fhe simulation StUdY’ 632+ has the Sm_a"eSt St_andargo genes were simulated and all 10 used in estimation. Results based on
deviation across the algorithms and sample sizes, while bot@arning sample of0 and a test sample @f0. Absolute minimums imold.
Split Samples do by far the worst. Partial results are shown in
Table 2. The results from the lung study are very similar and

thoroughly discussed in Molinat al. (2005).

Estimator p Algorithm Est St.Dev Bias MSE
LDA 0.026 0.028

Or, 0.87 DDA  0.073 0.058
Ovarian Study Results.Forn = 40 to n = 80, LOOCV NN 0.010 0.017
and .632+ have the smallest MSE followed by 5- and 10- CART  0.099 0.092
fold CV. As for bias, 10-fold CV, .632+, and LOOCYV vie for LDA 0067 0060 0.041 0.005
the smallest. The largest MSE and bias occurs with the Split 0-5 DNDNA g'(l)clji g'ggg g'ggi %009
Samples and 2-fold CV. Again .632+ has the smallest stan- CART 0304 0088 0205 0.063
dard deviation across algorithms and sample sizes; however, LDA 0.034 0.045 0.008 0.002
the discrepancy is much smaller than in the other two studies. v-fold 0.2 DDA 0.085 0.049 0.012 0.003
The Split Samples have the largest standard deviations. Par- €V NN 0.011 0024 0001 0

CART 0.158 0.072 0.059 0.012

tial results are shown in Table 3. oA 00370041 0.006 0001

) ) 0.1 DDA  0.074 0.048 0.001 0.002
All analyses were repeated with selecting fitefeatures NN 0.010 0021 O 0
having the largesttest statistics. The ranking of the resamp- CART  0.118 0.063 0.019 0.006
ling methods remained the same (Supplementary material). LDA  0.028 0.040 0.002 0.001

DDA  0.072 0.049 -0.001 0.002

. . LOOCV  0.025 NN 0010 0022 O 0

Repeatgd ResamplingWe examined the effegt of repeatgd CART 0110 0075 0011 0.006
resampling on 2-,5-, and 10-fold CV and Split Sample with LDA 0.046 0076 0.020 0.005
p = 1/3 for the three samples sizes and four algorithms. 0.333 DDA  0.066 0.085 -0.007 0.008
Each was repeated 10 and 30 times. Interestingly, there was NN 0.007 0.029 -0.003 0.001
minimal improvement when increased from 10 to 30 repeats. SPHT CART 0265 0116 0.166 0.047
However when increasing repeats from 1 to 10 (or 30), all LDA 0.073 0078 - 0.0470.007
>N | g rep =Y) 0.5 DDA  0.093 0.099 0.020 0.013

standard deviations decreased (up@&). The MSE either NN 0010 0028 0  0.001
decreased (up t85%) or stayed similar, which was also true CART  0.308 0.114 0.209 0.071

for the bias except in Split Sample for n=40 and 2-fold CV LDA 0.037 0.036 0.011 0.001

for n=40 and n=80 (Supplementary material). 632+ DDA~ 0085 0.036 0.012 0.003

50reps =~ .368 NN 0.008 0.016 -0.002 0
CART 0.160 0.034 0.061 0.010

Dimensionality of Feature Space.In the simulations of
Efron and Tibshirani (1997), .632+ outperformed LOOCV
and 10-fold CV. For example, in their experiment 22, with S ] )
10 variables and 36 patients, the MSE was .040 for .632Feésamplingvithoutreplacement. Table 5 displays the Simu-
and .058 for LOOCV. However, in our simulations with n=40 lation Study results for the two estimates usiitgiterations
(Table 1) .632+ does not fair so well, particularly with regard for both. Interestingly, the bias and MSE for the leave-one-
to bias. To investigate the differences between our simula@Ut bootstrap are roughly double that of 3-fold MCCV. The
tions and those in Efron and Tibshirani we decreased th@nlY two distinct differences between the two methods are the
dimensions of the feature space to a total of 10 variable&ePlicate copies in the learning set inherent in the bootstrap
instead of 750. The results are shown in Table 4 for the#Stimate and the fact than average.632n unique observati-
sample size of 40. With low dimension the large bias of the®"S aré in the learning sample for the leave-one-out bootstrap

bootstrap is substantially reduced and the .632+ does as wejihereas there araiways.G66n in the learning sample for
or better than LOOCYV and 10-fold CV. the 3-fold MCCV. Both of these factors may contribute to the

increase in bias and MSE.

Resampling with andwithout Replacement.To understand

the ramification of resampling with replacement as it pertainé1 DISCUSSION

to the bootstrap estimates we compared the leave-one-oHistimation of prediction error when confronted with a multi-
bootstrap estimate (Section 2.1.5) to the 3-fold MCCV. Thetude of covariates and small sample sizes is a relatively new
3-fold MCCV randomly select$66n for the learning setand problem. Feature selection, sample size, and signal to noise
and.333n for the test set. This is repeated numerous timesatio have important influences on the relative performance of
and the estimates averaged. Therefore the 3-fold MCCV isesampling methods. We have evaluated resampling methods
equivalent to the leave-one-out bootstrap except it employfor use in high dimensional classification problems using a




Prediction Error Estimation

Table 2. Lymphoma Study ResultS8omparison of resampling method’s MSE, bias, and standard deviation. Results shown are for the DDA algorithm using
the top10 genes as ranked by correspondingsts.

Resampling n =40 n =80 n =120

Method St.Dev  Bias MSE St.Dev Bias MSE St.Dev Bias MSE
2-fold CV | 0.085 0.038 0.01| 0.043 0.002 0.004 0.031 0.0 0.003
5-fold CV | 0.07 0.004 0.007 0.045 -0.008 0.004 0.032 -0.006 0.003
10-foldCV | 0.063 -0.007 0.004 0.036 -0.009 0.003 0.031 -0.006 0.003
LOOCV 0.072 -0.019 0.008 0.04 -0.013 0.004 0.033 -0.004 0.003
SPLIT1/3 | 0.119 0.001 0.017 0.071 0.0 0.007| 0.059 -0.004 0.005
SPLIT1/2 | 0.117 0.037 0.018 0.058 0.001 0.005 0.046 -0.001 0.004

.632+ 0.049 -0.006 0.004 0.025 -0.02 0.003 0.018 -0.015 0.002

Table 3. Ovarian Study Result€omparison of resampling method’s MSE, bias, and standard deviation. Results shown are for the DDA algorithm using the
top 10 genes as ranked by correspondirgsts.

Resampling n =40 n = 80
Method St.Dev  Bias MSE St.Dev Bias MSE
2-fold CV | 0.098 0.026 0.015 0.05 0.004 0.007
5-fold CV | 0.082 0.0 0.012 0.039 -0.005 0.006
10-foldCV | 0.082 -0.01 0.01) 0.036 -0.005 0.005
LOOCV 0.079  -0.004 0.011 0.037 -0.004 0.006
SPLIT1/3 | 0.133  -0.002 0.023 0.075 -0.009 0.009
SPLIT1/2 | 0.113 0.027 0.018 0.071 0.013 0.01
632+ 0.075 -0.006 0.011 0.028 -0.014 0.005

range of sample sizes, algorithms, and signals. Some general weak signal. In this setting, the larger MSE is attributed
conclusions may be summarized as follows: to LOOCV’s increased variance.

. . ) 3. 10-fold CV prediction error estimates approximate
1. With small sample sizes, the Split Sample method those of LOOCV in almost all settings. For com-

and 2-fold CV perform very poorly. This poor perfor- putationally burdensome analysd$:-fold CV may be
mance is primarily due to a large positive bias resulting preferable to LOOCV. Additionally, in the simulated

from use of a _reduced tra_umng set size which seve_rely data, repeated resamplings (the average of 10 repeats)
impairs its ability to effectively select features and fit a reduce the MSE, bias, and variancel 6fold CV.
model. The large bias contributes to a large MSE.

2. LOOCYV generally performs very well with regard to
MSE and bias. The only exception is when an unsta-
ble classifier (e.g., CART) is used in the presence of a

4. The .632+ prediction error estimate performs best
with moderate to weak signal to noise ratios.Pre-
vious studies have found the bootstrap variants superior

Table 5. Resampling with and without Replaceméttie leave-one-out bootstrap and 3-fold MCCV estimate (col 3), standard deviation (col 4), bias (col 5),
and MSE (col 6), over 3 samples sizes and 4 algorithms. Feature selection was used to select the top 10 ranketitgstses by

Leave-one-out Bootstrap 3-fold MCCV
n Alg Est StDev(Est) Bias MSH Est StDev(Est) Bias MSE
LDA | 0.331 0.075 0.252 0.072 0.242 0.101 0.164 0.035
DDA | 0.337 0.075 0.177 0.044 0.270 0.072 0.110 0.022
n=40 NN | 0.259 0.072 0.217 0.0550.167 0.083 0.125 0.022
CART | 0.414 0.065 0.296 0.114 0.377 0.085 0.256 0.094
LDA 0.07 0.063 0.043 0.004 0.044 0.053 0.017 0.002
DDA | 0.146 0.058 0.074 0.008 0.104 0.058 0.033 0.003
n=80 NN | 0.046 0.056 0.036 0.008 0.022 0.043 0.012 0.001
CART | 0.098 0.047 0.057 0.006 0.062 0.039 0.020 0.002
LDA | 0.032 0.033 0.011 0.001 0.026 0.026 0.005 0
DDA | 0.088 0.045 0.036 0.002 0.068 0.043 0.016 0.001
n=120 NN | 0.016 0.030 0.007 0 | 0.012 0.023 0.003 0
CART | 0.048 0.025 0.022 0.001 0.038 0.022 0.012 0.001
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to LOOCYV andv-fold CV, however, these studies did http:/lib.stat.cmu.edu/R/ICRAN/src/contrib/Descriptions/supclust.html
not include feature selection. As seen in Table 1, honedpudoit, S., van der Laan, M.J. (2003) Asymptotics of Cross-Validated Risk
resampling in small samples with strong signal sug- Estimation in Model Selection and Performance Assessment. Techni-
. cal Report 126, U.C. Berkeley Division of Biostatistics Working Paper
gest that LOOCV and 10-fold CV are in fact better P y g rap

. Series. URL http://www.bepress.com/ucbbiostat/paper126
than the.632+ bootstrap. This d|screpancy fades when Efron, B. (1983) Estimating the Error Rate of a Prediction Rule: Improve-

feature selection is discarded (Table 4) and when the ment on Cross-Validationlournal of the American Statistical Associa-
signal decreases as seen in the Lymphoma and Ova- tion, 78(382), 316-331.
rian data sets (Tables 2 and 3). Additional glimpses intcEfron, B., Tibshirani, R.J. (1993)n Introduction to the Bootstragviono-

the bootstrap estimate (Table 5) indicate that the samp- graphs on Statistics and Applied Probability 57. Chapman & Hall.

i ith | ti the MSE d bi bEfron, B., Tibshirani, R.J. (1997) Improvements on Cross-Validation: The
Ing with replacément increases the an las Sub- - g354 Bootstrap Methodournal of the American Statistical Associatjon

stantially over 3-fold MCCV (i.e., resampling without  92(438), 548-560.
replacement). Efron, B. (2004) The Estimation of Prediction Error: Covariance Penalties

5 MCCV does not decrease the MSE or bias enough to and Cross-ValidationJournal of the American Statistical Association

; 99(467), 619-642.
warrant its use over-fold CV. Geisser, S. (1975) The Predictive Sample Reuse Method With Applications.

6. As the Samp]e size grows the differences among the Journal of the American Statistical Associatjai®, 320-328.
resampling methods decrease. Additionally, as the signéjastie, T., Tibshirani, R., Friedman, J. (200@)e Elements of Statistical

. . Learning: Data Mining, Inference, and PredictioSpringer Series in
decreases from strong in the simulated data to rather g cice Springer, 1st edition.

weak in the ovarian data the discrepancies between th@aka, R., Gentlemen, R. (1996) R: A language for data analysis and

methods diminish. graphicsJournal of Computational and Graphical Statistigs 299-314.
Lachenbruch, P.A., Mickey, M.R. (1968) Estimation of error rates in
In future work we will compare the resampling methods  discriminant analysisTechnometricd0, 1-11.

for continuous outcomes and continue to exp|0re the behavid¥icLachlan, G.J. (1992piscriminant Analysis and Statistical Pattern Reco-
of the bootstrap estimates. Additionally, the effect of feature 9nition John Wiley & Sons, Inc..

lecti thod | . tant role i dicti Molinaro, A.M., Dudoit, S., van der Laan, M.J. (2004) Tree-based Mul-
seléction method may play an important rolé in prediction ;a0 Regression and Density Estimation with Right-censored Data.

and needs further investigation. Journal of Multivariate Analysis90(1):154-177.
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